skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prabhakaran, Thara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aerosols are important environmental factors that can influence deep convective clouds (DCCs) by serving as cloud condensation nuclei. Due to complications in DCC dynamics and microphysics, and aerosol size distribution and composition, understanding aerosol‐DCC interactions has been a daunting challenge. Recently, the convective invigoration mechanisms through enhancing latent heating in condensation and ice‐related processes that have been proposed in literature are debated for their significance qualitatively and quantitatively. A salient issue arising from these debates is the imperative need to clarify essential knowledge and methodologies in investigating aerosol impacts on deep convection. Here we have presented our view of key aspects on investigating and understanding these invigoration mechanisms as well as the aerosol and meteorological conditions under which these mechanisms may be significant based on new findings. For example, the condensational invigoration is most significant under a clean condition with an introduction of a large number of ultrafine particles, and the freezing‐induced invigoration can be significant in a clean condition with a large number of relatively large‐size particles being added. We have made practical recommendations on approaches for investigating aerosol impacts on convection with both modeling and observations. We note that the feedback induced by the invigoration via the enhanced latent heating to circulation and meteorology can be an important part of aerosol impacts but is very complicated and varies with different convective storm types. This is an important future direction for studying aerosol‐DCC interactions. 
    more » « less
  2. Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations. 
    more » « less